NSTITUCIÓN EDUCATIVA "CENTRAL TÉCNICO"

Resultado de imagen para logo del central tecnico




Alumno:VARGAS GARCÍA JOEL.


Docente: Ing. Julio Calvopiña Herrera, MSc.


Tema:EL ALTERNADOR


Inducción magnética
La inducción magnética es el proceso mediante el cual campos magnéticos generan campos eléctricos. Al generarse un campo eléctrico en un material conductor, los portadores de carga se verán sometidos a una fuerza y se inducirá una corriente eléctrica en el conductor.
Cualquier dispositivo (batería, pila…) que mantiene la diferencia de potencial entre dos puntos en un circuito se llama fuente de alimentación.
La fuerza electromotriz ε (fem) de una fuente se define como el trabajo realizado por el dispositivo por unidad de carga, por lo que las unidades de fuerza electromotriz son los voltios. Cuando decimos que un campo magnético genera una corriente eléctrica en un conductor, nos referimos a que aparece una fem (llamada fem inducida) de modo que las cargas del conductor se mueven generando una corriente (corriente inducida).
Este hecho se observa fácilmente en el siguiente experimento: si acercamos o alejamos un imán a un conductor que no está conectado a ninguna fuente de fuerza electromotriz, se detecta con un amperímetro que aparece una corriente eléctrica en el conductor. La corriente desaparece si el imán se mantiene en la misma posición, por lo que se llega a la conclusión de que sólo una variación del flujo del campo magnético con respecto al tiempo genera corriente eléctrica.


La ley que explica esta interacción entre la fuerza electromotriz inducida y el campo magnético es la Ley de Faraday:










Corriente alterna 


La corriente alterna (CA) es un tipo de corriente eléctrica que se caracteriza por cambiar a lo largo del tiempo, ya sea en intensidad o en sentido, a intervalos regulares.
El voltaje varía entre los valores máximo y mínimo de manera cíclica, el valor del voltaje es positivo la mitad del tiempo (semiciclo positivo o semiperiodo positivo) y negativo la otra mitad. Esto significa que la mitad del tiempo la corriente circula en un sentido, la otra mitad de tiempo en el otro sentido. La forma más habitual de la ondulación sigue una función trigonométrica tipo seno, dado que es la forma más eficiente y práctica de producir energía eléctrica mediante alternadores. Sin embargo hay ciertas aplicaciones en las que se utilizan otras formas de onda, como la onda cuadrada o la onda triangular.






Corriente alterna


 Corriente continua

La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.


Fuentes suministradoras de corriente directa o continua. A la izquierda, una batería de las comúnmente utilizada en los coches y todo tipo de vehículo motorizado. A la derecha, pilas de amplio uso, lo mismo en linternas que en aparatos y dispositivos eléctricos y electrónicos.
Es importante conocer que ni las baterías, ni los generadores, ni ningún otro dispositivo similar crea cargas eléctricas pues, de hecho, todos los elementos conocidos en la naturaleza las contienen, pero para establecer el flujo en forma de corriente eléctrica es necesario ponerlas en movimiento.






Diodo


¿Que es un diodo?

El diodo es un componente electrónico que solo permite el flujo de la electricidad en un solo sentido, debido a esto su funcionamiento se parece a un interruptor el cual abre o cierra los circuitos. Este dispositivo esta conformado por dos tipos de materiales diferentes los cuales se traducen a dos terminales, un ánodo (+) y un cátodo (-).
Diodo

Como funciona un diodo?

Al tener dos terminales podemos polarizar de dos formas (directa e inversa) diferentes a los diodos y su funcionamiento depende mucho del tipo de polarización que le ponga.

Polarización Directa:

El ánodo se conecta al positivo de la fuente de voltaje y el cátodo se conecta al negativo, con esta configuración el diodo actúa como un interruptor cerrado. Una consideración importante dentro de esta configuración es que el diodo provoca una caída de voltaje de 0.6 a 0.7v.
polarización directa

Polarización Inversa:

El ánodo se conecta al negativo de la fuente de voltaje y el cátodo al positivo, en esta configuración la resistencia del diodo aumenta en grandes cantidades y esto hace que actué como un interruptor abierto.

Circuito rectificador

Circuitos rectificadores de media onda

Figura I.- Circuito rectificador de media onda
Es construido con un diodo ya que este puede mantener el flujo de corriente en una sola dirección, se puede utilizar para cambiar una señal de CA a una de CC. En la figura I. se muestra un circuito rectificador de media onda. Cuando la tensión de entrada es positiva, el diodo se polariza en directo y se puede sustituir por un corto circuito. Si la tensión de entrada es negativa el diodo se polariza en inverso y se puede remplazar por un circuito abierto. Por tanto cuando el diodo se polariza en directo, la tensión de salida a través de la carga se puede hallar por medio de la relación de un divisor de tensión. Sabemos además que el diodo requiere 0.7 voltios para polarizarse, así que la tensión de salida está reducida en esta cantidad (este voltaje depende del material de la juntura del diodo). Cuando la polarización es inversa, la corriente es cero, de manera que la tensión de salida también es cero. Este rectificador no es muy eficiente debido a que durante la mitad de cada ciclo la entrada se bloquea completamente desde la salida, perdiendo así la mitad de la tensión de alimentación. El voltaje de salida en este tipo de rectificador es aproximadamente 0.45 veces el voltaje eficaz de la señal de entrada (este 0.45 surge de calcular ). La forma de onda que observamos a la salida se muestra en la figura I.

Circuitos rectificadores de onda completa

Un rectificador de onda completa convierte la totalidad de la forma de onda de entrada en una polaridad constante (positiva o negativa) en la salida, mediante la inversión de las porciones (semiciclos) negativas (o positivas) de la forma de onda de entrada. Las porciones positivas (o negativas) se combinan con las inversas de las negativas (positivas) para producir una forma de onda parcialmente positiva (negativa).

Rectificador de onda completa mediante dos diodos con transformador de punto medio

Figura 2.- Circuito rectificador de K onda completa
El circuito, representado en la Figura 2, funciona como sigue:
El transformador convierte la tensión alterna de entrada en otra tensión alterna del valor deseado, esta tensión es rectificada durante el primer semiciclo por el diodo D1 y durante el segundo semiciclo por el diodo D2, de forma que a la carga R le llega una tensión continua pulsante muy impura ya que no está filtrada ni estabilizada.
En este circuito tomamos el valor de potencial 0 en la toma intermedia del transformador.

Rectificador de onda completa tipo puente doble de Graetz[editar]

Se trata de un rectificador de onda completa en el que, a diferencia del anterior, sólo es necesario utilizar transformador si la tensión de salida debe tener un valor distinto de la tensión de entrada.
En la Figura 3 está representado el circuito de un rectificador de este tipo.
Figura 3.- Rectificador de onda completa con puente de Gratz
A fin de facilitar la explicación del funcionamiento de este circuito vamos a denominar D-1 al diodo situado más arriba y D-2, D-3 y D-4 a los siguientes en orden descendente.
  • Durante el semiciclo en que el punto superior del secundario del transformador es positivo con respecto al inferior de dicho secundario, la corriente circula a través del camino siguiente:
Punto superior del secundario --> Diodo D-1 --> (+)Resistencia de carga R(-) --> Diodo D-4 --> punto inferior del secundario.
  • En el semiciclo siguiente, cuando el punto superior del secundario es negativo y el inferior positivo lo hará por:
Punto inferior del secundario --> Diodo D-2 --> (+)Resistencia de carga R (-) --> Diodo D-3 --> punto superior del secundario.
En este caso, vemos como circula corriente por la carga, en el mismo sentido, en los dos semiciclos, con lo que se aprovechan ambos y se obtiene una corriente rectificada más uniforme que en el caso del rectificador de media onda, donde durante un semiciclo se interrumpe la circulación de corriente por la carga.
En ambos tipos de rectificadores de onda completa, la forma de onda de la corriente rectificada de salida, será la de una corriente continua pulsatoria, pero con una frecuencia de pulso doble de la corriente alterna de alimentación.

Electro-magnetismo

Rama de la física que estudia las relaciones entre la electricidad y el magnetismo, es decir, el campo magnético creado por la corriente eléctrica y el efecto de un campo magnético sobre una corriente eléctrica.
Dentro de esta rama se hallan, por el hecho de basarse en las leyes del electromagnetismo, la electrodinámica y la inducción electromagnética, que tratan, respectivamente, de las acciones ponderomotríces entre las corrientes eléctricas y de las fuerzas electromotrices inducidas en un circuito por la variación del flujo electromagnético. Las leyes del electromagnetismo son la base del funcionamiento de los electroimanes de los motores eléctricos, las dinamos y los alternadores.
La conexión entre la electricidad y el magnetismo ya se sospechaba desde hace mucho tiempo, y en el año 1820 el físico Danés Hans Christian Orsted demostró que un flujo de corriente eléctrica a través de un hilo produce un campo electromagnetico. Andre-Marie Ampere, en Francia, repitió inmediatamente los experimentos de Orsted y en poco tiempo fue capaz de expresar la relación entre corriente y conductor con una fórmula matemática simple y elegante. Además demostró que un flujo de corriente eléctrica en disposición circular produce un dipolo magnético.
Si quieres saber más sobre los primeros estudios sobre magnetismo y electricidad, te recomendamos que le eches un vistazo al siguiente documental:
 l



Rotor

El rotor es el componente que gira (rota) en una máquina eléctrica, sea ésta un motor o un generador eléctrico. Junto con su contraparte fija, el estátor, forma el conjunto fundamental para la transmisión de potencia en motores y máquinas eléctricas en general.
El rotor está formado por un eje que soporta un juego de bobinas arrolladas sobre un núcleo magnético que gira dentro de un campo magnético creado bien por un imán o por el paso por otro juego de bobinas, arrolladas sobre unas piezas polares, que permanecen estáticas y que constituyen lo que se denomina estátor de una corriente continua o alterna, dependiendo del tipo de máquina de que se trate.
El rotor de un motor de corriente alterna, denominado también como "jaula de ardilla".

Estator
Estator.jpg
Estator
Información sobre la plantilla

Parte fija del motor, siendo el elemento que opera como base, permitiendo que desde ese punto se lleve a cabo la rotación del motor.










Funcionamiento

El estator de un motor de inducción es el inductor, es decir el encargado de crear el campo magnético. Está formado por:
  • Circuito magnético: tambor con forma cilíndrica y ranurado, formado de chapas de Fe aleado al Si, asiladas entre sí con Carlite, para reducir las pérdidas por corrientes parásitas. La misión de las ranuras es alojar a los conductores de los devanados.
  • Circuito eléctrico: formado por tres devanados monofásicos que al conexionarlos en estrella o triángulo, forman un devanado trifásico.
En su concepción más elemental, estos devanados son tres bobinas desfasadas 120º. Cada bobina está formada por 2 conductores diametralmente opuestos (bobina de paso diametral) y el estator precisa entonces de 6 ranuras para alojarlos . De esta forma se desaprovecha la capacidad del estator puesto que solamente son necesarias 6 ranuras para 3 bobinas. En los devanados reales la disposición es muy distinta:
  • El número de ranuras es normalmente 24, 36, 48, etc.
  • Las bobinas no son de paso diametral.
  • Cada devanado monofásico está formado de varias de estas bobinas conectadas en serie.
Constructivamente las bobinas dependen del tipo de motor, diferenciando entre motores de BT (<1000 V) y motores de MT (>1000 V):
  • Motores de BT: las bobinas son de hilo esmaltado, de tal forma que este baño aislante garantiza el aislamiento entre ellas

Constitución

El estator está constituido principalmente de un conjunto de láminas de acero al silicio (se les llama “paquete”), que tienen la habilidad de permitir que pase a través de ellas el flujo magnético con facilidad; la parte metálica del estator y los devanados proveen los polos magnéticos. Los polos de un motor siempre son pares (pueden ser 2, 4, 6, 8, 10, etc.,), por ello el mínimo de polos que puede tener un motor para funcionar es dos (un norte y un sur).

Tipos de estator

Existen dos tipos de estatores:
  1. Estator de polos salientes
  2. Estator ranurado


Alternador trifásico



INTRODUCCIÓN
Como se decía antes, un generador simple sin conmutador producirá una corriente eléctrica que cambia de dirección a medida que gira la armadura. Este tipo de corriente alterna es ventajosa para la transmisión de potencia eléctrica, por lo que la mayoría de los generadores eléctricos son de este tipo. En su forma más simple, un generador de corriente alterna se diferencia de uno de corriente continua en sólo dos aspectos: los extremos de la bobina de su armadura están sacados a los anillos colectores sólidos sin segmentos del árbol del generador en lugar de los conmutadores, y las bobinas de campo se excitan mediante una fuente externa de corriente continua más que con el generador en sí. Los generadores de corriente alterna de baja velocidad se fabrican con hasta 100 polos, para mejorar su eficiencia y para lograr con más fácilidad la frecuencia deseada. Los alternadores accionados por turbinas de alta velocidad, sin embargo, son a menudo máquinas de dos polos. La frecuencia de la corriente que suministra un generador de corriente alterna es igual a la mitad del producto del número de polos y el número de revoluciones por segundo de la armadura.
HISTORIA DE LOS CIRCUITOS TRIFÁSICOS
  Nikola Tesla, un inventor Serbio-Americano fue quien descubrió el principio del campo magnético rotatorio en 1882, el cual es la base de la maquinaria de corriente alterna.
 Él inventó el sistema de motores y generadores de corriente alterna polifásica que da energía al planeta. Sin sus inventos el día de hoy no sería posible la electrificación que impulsa al crecimiento de la industria y al desarrollo de las comunidades.


Resultado de imagen para alternador trifasico definicion

Regulación de voltaje
Regulador de VoltajeCircuito encargado de mantener el voltaje a su salida constante independientemente de las variaciones en la línea (red industrial) y en la carga (consumidor).

Regulador serie

Resultado de imagen para regulador serie

El regulador serie elimina las limitaciones presentes en el regulador paralelo, en este caso el diodo zener es alternado con transistores bipolares de manera tal que la polarización del diodo zener se logra en un punto de corriente muy por debajo de su capacidad total, esta polarización evita el calentamiento del diodo sin afectar la corriente de la carga, en este caso el diodo solo se encargará de mantener estable el voltaje de mando en la base del transistor, la corriente de carga, que puede llegar a superar varias veces la corriente del zener ahora circulará a través de la unión colector-emisor del transistor e incluso puede manejarse más corriente interconectando más transistores en el circuito.

Regulador a C.I

Resultado de imagen para regulador a CI
Otro regulador muy eficiente y sencillo es el regulador de la familia 78xx, este circuito integrado con apariencia de transistor existe en dos variantes, los 78xx y los 79 xx, el primero se trata de un regulador con salida positiva mientras que el segundo caso hace referencia a un regulador con salida negativa, las siglas xx hacen referencia al voltaje que regulan, si por ejemplo se trata de un C.I 7805, estaremos en presencia de un regulador positivo de 5 voltios, si por el contrario se trata de un 7905 se tratará entonces de un regulador negativo de 5 voltios, su montaje resulta realmente sencillo y para mayores valores de corriente de carga pueden ser montados conjuntamentente con transistores. El diagrama muestra este tipo de regulador.

Regulador autocontrolado transistorizado

El regulador autocontrolado transistorizado es en escencia un regulador serie, pero a diferencia del regulador serie, el autocontrolado no emplea diodo zener como elemento estabilizador de tensión. En su lugar emplea un mecanismo de auto muestreo que le permite corregirse así mismo. La figura muestra el diagrama eléctrico del regulador autocontrolado.


Regulador autocontrolado.JPG


Funcionamiento del alternador

Un alternador es una máquina eléctrica, capaz de transformar energía mecánica en energía eléctrica, generando una corriente alterna mediante inducción electromagnética.
Los alternadores están creados, siguiendo el principio de que en un conductor sometido a un campo magnético variable, durante un determinado tiempo se va a inducir una tensión eléctrica o fuerza electromotriz, cuya polaridad depende del sentido del campo y el valor del flujo que lo atraviesa (ley de Faraday).

Características constructivas

Un alternador consta de dos partes fundamentales, el inductor (no confundir con inductor o bobina, pues en la figura las bobinas actúan como inducido), que es el que crea el campo magnético y el inducido que es el conductor atravesado por las líneas de fuerza de dicho campo magnético. 1
Alternador.svg
Figura 1.- Disposición de elementos en un alternador simple de excitación permanente con dos pares de polos

Inductor

El rotor, que en estas máquinas coincide con el inductor, es el elemento giratorio del alternador, que recibe la fuerza mecánica de rotación.
Para tener una idea más completa de lo que son los inductores, diremos que básicamente están formados por un metal ferromagnético sobre el que se dispone un devanado, generalmente de alambre de cobre esmaltado para producir un campo magnético, o un imán fijo en los más elementales.

Inducido

El inducido o estátor es donde se encuentran unos cuantos pares de polos distribuidos de modo alterno y, en este caso, formados por un bobinado en torno a un núcleo de material ferromagnético de característica blanda, normalmente hierro dulce.
La rotación del inductor hace que su campo magnético, formado por imanes fijos, resulte variable en el tiempo, y el paso de este campo variable por los polos del inducido genera en él una corriente alterna que se recoge en los terminales de la máquina.

Aplicación

La principal aplicación del alternador es la de generar energía eléctrica de corriente alterna para entregar a la red eléctrica, aunque también, desde la invención de los rectificadores de silicio, son la principal fuente de energía eléctrica en todo tipo de vehículos como automóviles, aviones, barcos y trenes, reemplazando al dinamo por ser más eficiente y económico.





Comentarios

Entradas populares de este blog