NSTITUCIÓN EDUCATIVA "CENTRAL TÉCNICO"
Tema:EL ALTERNADOR
Inducción magnética
La inducción magnética es el proceso mediante el cual campos magnéticos generan campos eléctricos. Al generarse un campo eléctrico en un material conductor, los portadores de carga se verán sometidos a una fuerza y se inducirá una corriente eléctrica en el conductor.
Cualquier dispositivo (batería, pila…) que mantiene la diferencia de potencial entre dos puntos en un circuito se llama fuente de alimentación.
La fuerza electromotriz ε (fem) de una fuente se define como el trabajo realizado por el dispositivo por unidad de carga, por lo que las unidades de fuerza electromotriz son los voltios. Cuando decimos que un campo magnético genera una corriente eléctrica en un conductor, nos referimos a que aparece una fem (llamada fem inducida) de modo que las cargas del conductor se mueven generando una corriente (corriente inducida).
Este hecho se observa fácilmente en el siguiente experimento: si acercamos o alejamos un imán a un conductor que no está conectado a ninguna fuente de fuerza electromotriz, se detecta con un amperímetro que aparece una corriente eléctrica en el conductor. La corriente desaparece si el imán se mantiene en la misma posición, por lo que se llega a la conclusión de que sólo una variación del flujo del campo magnético con respecto al tiempo genera corriente eléctrica.
La ley que explica esta interacción entre la fuerza electromotriz inducida y el campo magnético es la Ley de Faraday:
Corriente alterna
La corriente alterna (CA) es un tipo de corriente eléctrica que se caracteriza por cambiar a lo largo del tiempo, ya sea en intensidad o en sentido, a intervalos regulares.
El voltaje varía entre los valores máximo y mínimo de manera cíclica, el valor del voltaje es positivo la mitad del tiempo (semiciclo positivo o semiperiodo positivo) y negativo la otra mitad. Esto significa que la mitad del tiempo la corriente circula en un sentido, la otra mitad de tiempo en el otro sentido. La forma más habitual de la ondulación sigue una función trigonométrica tipo seno, dado que es la forma más eficiente y práctica de producir energía eléctrica mediante alternadores. Sin embargo hay ciertas aplicaciones en las que se utilizan otras formas de onda, como la onda cuadrada o la onda triangular.
Corriente continua
La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.
|
Es importante conocer que ni las baterías, ni los generadores, ni ningún otro dispositivo similar crea cargas eléctricas pues, de hecho, todos los elementos conocidos en la naturaleza las contienen, pero para establecer el flujo en forma de corriente eléctrica es necesario ponerlas en movimiento.
|
Diodo
¿Que es un diodo?
El diodo es un componente electrónico que solo permite el flujo de la electricidad en un solo sentido, debido a esto su funcionamiento se parece a un interruptor el cual abre o cierra los circuitos. Este dispositivo esta conformado por dos tipos de materiales diferentes los cuales se traducen a dos terminales, un ánodo (+) y un cátodo (-).
Como funciona un diodo?
Al tener dos terminales podemos polarizar de dos formas (directa e inversa) diferentes a los diodos y su funcionamiento depende mucho del tipo de polarización que le ponga.
Polarización Directa:
El ánodo se conecta al positivo de la fuente de voltaje y el cátodo se conecta al negativo, con esta configuración el diodo actúa como un interruptor cerrado. Una consideración importante dentro de esta configuración es que el diodo provoca una caída de voltaje de 0.6 a 0.7v.
Polarización Inversa:
El ánodo se conecta al negativo de la fuente de voltaje y el cátodo al positivo, en esta configuración la resistencia del diodo aumenta en grandes cantidades y esto hace que actué como un interruptor abierto.
Circuito rectificador
Circuitos rectificadores de media onda
Es construido con un diodo ya que este puede mantener el flujo de corriente en una sola dirección, se puede utilizar para cambiar una señal de CA a una de CC. En la figura I. se muestra un circuito rectificador de media onda. Cuando la tensión de entrada es positiva, el diodo se polariza en directo y se puede sustituir por un corto circuito. Si la tensión de entrada es negativa el diodo se polariza en inverso y se puede remplazar por un circuito abierto. Por tanto cuando el diodo se polariza en directo, la tensión de salida a través de la carga se puede hallar por medio de la relación de un divisor de tensión. Sabemos además que el diodo requiere 0.7 voltios para polarizarse, así que la tensión de salida está reducida en esta cantidad (este voltaje depende del material de la juntura del diodo). Cuando la polarización es inversa, la corriente es cero, de manera que la tensión de salida también es cero. Este rectificador no es muy eficiente debido a que durante la mitad de cada ciclo la entrada se bloquea completamente desde la salida, perdiendo así la mitad de la tensión de alimentación. El voltaje de salida en este tipo de rectificador es aproximadamente 0.45 veces el voltaje eficaz de la señal de entrada (este 0.45 surge de calcular ). La forma de onda que observamos a la salida se muestra en la figura I.
Circuitos rectificadores de onda completa
Un rectificador de onda completa convierte la totalidad de la forma de onda de entrada en una polaridad constante (positiva o negativa) en la salida, mediante la inversión de las porciones (semiciclos) negativas (o positivas) de la forma de onda de entrada. Las porciones positivas (o negativas) se combinan con las inversas de las negativas (positivas) para producir una forma de onda parcialmente positiva (negativa).
Rectificador de onda completa mediante dos diodos con transformador de punto medio
El circuito, representado en la Figura 2, funciona como sigue:
El transformador convierte la tensión alterna de entrada en otra tensión alterna del valor deseado, esta tensión es rectificada durante el primer semiciclo por el diodo D1 y durante el segundo semiciclo por el diodo D2, de forma que a la carga R le llega una tensión continua pulsante muy impura ya que no está filtrada ni estabilizada.
En este circuito tomamos el valor de potencial 0 en la toma intermedia del transformador.
Rectificador de onda completa tipo puente doble de Graetz[editar]
Se trata de un rectificador de onda completa en el que, a diferencia del anterior, sólo es necesario utilizar transformador si la tensión de salida debe tener un valor distinto de la tensión de entrada.
En la Figura 3 está representado el circuito de un rectificador de este tipo.
A fin de facilitar la explicación del funcionamiento de este circuito vamos a denominar D-1 al diodo situado más arriba y D-2, D-3 y D-4 a los siguientes en orden descendente.
- Durante el semiciclo en que el punto superior del secundario del transformador es positivo con respecto al inferior de dicho secundario, la corriente circula a través del camino siguiente:
Punto superior del secundario --> Diodo D-1 --> (+)Resistencia de carga R(-) --> Diodo D-4 --> punto inferior del secundario.
- En el semiciclo siguiente, cuando el punto superior del secundario es negativo y el inferior positivo lo hará por:
Punto inferior del secundario --> Diodo D-2 --> (+)Resistencia de carga R (-) --> Diodo D-3 --> punto superior del secundario.
En este caso, vemos como circula corriente por la carga, en el mismo sentido, en los dos semiciclos, con lo que se aprovechan ambos y se obtiene una corriente rectificada más uniforme que en el caso del rectificador de media onda, donde durante un semiciclo se interrumpe la circulación de corriente por la carga.
En ambos tipos de rectificadores de onda completa, la forma de onda de la corriente rectificada de salida, será la de una corriente continua pulsatoria, pero con una frecuencia de pulso doble de la corriente alterna de alimentación.
Electro-magnetismo
Rama de la física que estudia las relaciones entre la electricidad y el magnetismo, es decir, el campo magnético creado por la corriente eléctrica y el efecto de un campo magnético sobre una corriente eléctrica.
Dentro de esta rama se hallan, por el hecho de basarse en las leyes del electromagnetismo, la electrodinámica y la inducción electromagnética, que tratan, respectivamente, de las acciones ponderomotríces entre las corrientes eléctricas y de las fuerzas electromotrices inducidas en un circuito por la variación del flujo electromagnético. Las leyes del electromagnetismo son la base del funcionamiento de los electroimanes de los motores eléctricos, las dinamos y los alternadores.
La conexión entre la electricidad y el magnetismo ya se sospechaba desde hace mucho tiempo, y en el año 1820 el físico Danés Hans Christian Orsted demostró que un flujo de corriente eléctrica a través de un hilo produce un campo electromagnetico. Andre-Marie Ampere, en Francia, repitió inmediatamente los experimentos de Orsted y en poco tiempo fue capaz de expresar la relación entre corriente y conductor con una fórmula matemática simple y elegante. Además demostró que un flujo de corriente eléctrica en disposición circular produce un dipolo magnético.
Si quieres saber más sobre los primeros estudios sobre magnetismo y electricidad, te recomendamos que le eches un vistazo al siguiente documental:
l
Rotor
El rotor es el componente que gira (rota) en una máquina eléctrica, sea ésta un motor o un generador eléctrico. Junto con su contraparte fija, el estátor, forma el conjunto fundamental para la transmisión de potencia en motores y máquinas eléctricas en general.
El rotor está formado por un eje que soporta un juego de bobinas arrolladas sobre un núcleo magnético que gira dentro de un campo magnético creado bien por un imán o por el paso por otro juego de bobinas, arrolladas sobre unas piezas polares, que permanecen estáticas y que constituyen lo que se denomina estátor de una corriente continua o alterna, dependiendo del tipo de máquina de que se trate.
Comentarios
Publicar un comentario